Date: 04/29/2014

Professor Rajasekaran Note taker: Wei Zeng

Applications

1. Material Genomics

Build a repository of materials -> Text Mining

2. Sequence Assembly

Input: A set of Reads.

Sequencers output random substrings of G, each such substring is a read.

Output: A close approximation to G.

$$R_1 = R_2 = R_3 = R_4$$

We utilize overlaps among reads.

Challenges:

- 1) There could be errors in the reads.
- 2) There could be repeats.

Sanger:

Read length \simeq a few thousands.

• Next Generation Sequencing (NGS):

Has read lengths in a few tens.

Coverage: the expected number of reads that cover any position in G.

Basic Idea:

Construct a directed graph G(V, E)

 $V \rightarrow Reads$

 $(R_1, R_2) \in E$ if a suffix of R_1 of length $\geq \lambda$ is the same as a prefix of R_2 .

Example assemblers: VELVET, ABySS, SGA, GSA, Leap

Do an appropriate walk in the graph to identify long paths and output them. Each such path is a "CONTIG".

Observation:

Repeats cause cycles in the graph.

When cycle happens, just cut the path AQB and call it a CONTIG.

- 1) Overlap graph -> Each read is a node
- 2) De Bruijn Graph:

For every read

Generate k-mers;

If the read length is r,

Then there will be (r-k+1) k-mers from every read.

Construct a graph G(V, E) where $V \rightarrow k$ -mers, $(a, b) \in E$ if a & b overlap by (k-1)

Performance Measure:

N50 value:

Sort the contigs in terms of lengths;

Let C_1, C_2, \dots, C_N be the sorted sequence in nondecreasing order;

Let
$$\sum_{i=1}^{N} C_i = Q$$
;

If q is the least index such that $\sum_{i=1}^{q} C_i \ge \frac{1}{2} Q$,

Then $|C_q|$ is the N50 value

Scaffolding:

Input: A set of contigs.

Output: an ordering among the contigs.

One approach is to use optical restriction maps.

Start with a restriction enzyme => a small string

(possibly generated randomly)

e.g., gaactat =E

Identify where E occurs in each of the contigs.

Output: $N_1, N_2, ..., \leftarrow$ Optical Restriction Map

We pose the problem of scaffolding as an optimization problem.

<u>Objective function</u>: The sum of all distance discrepancies for the contigs should be minimum.

Pop et al. used dynamic programming to solve it.

Error Correction:

Input: A set of reads.

Output: Corrected reads.

Idea: Let R be any read

Algorithms: Reptile, Coral, RACER (improves HiTec)

Consensus in any position is used to correct that position.

Analysis:

Let ϵ be the error rate;

Let q be the number of reads overlapping in any column;

Let X be the number of errors in the column

$$X \to B(q, \epsilon)$$

Prob. of an incorrect correction is $= Prob\left[X \geq \frac{1}{2}q\right] = \sum_{i=\frac{q}{2}}^{q} \binom{q}{i} \epsilon^i (1-\epsilon)^{q-i}$

RACER: generates l-mers.

Check the next character of each read, find the majority of the character and replace the others with that character.