CSES5095 — Research Topics in Big Data Analytics Professor Rajasekaran
Date: 04/24/2014 Note taker: Wei Zeng

Artificial Neural Networks (ANN)

* An Artificial Neural Network (ANN) is a directed graph G(V,E)
V->Processors
E->Edges with weights

* Perceptron

1w,

x, W Y
1

0

where x;s are the inputs, yis the output, w;s are the weights, 6 is the bias constant and 7 is
the threshold.
|fW1x1 +W2x2 +9 2 Tthen y: 1

else y=0
Without loss of generality, let 7 = 0= wyx; + wyx, +0 =0
-wqx1—6 WX (7]
X, = 1 = -1 — —. We can think of a perceptron as a binary classifier. If we can
w2 W2 w2

find a straight line that separates the two classes, then this straight line can be used to specify a
corresponding perceptron.

l !
slope = ——
\x1—>

Fact: We can build perceptrons for various Boolean operations.

E.g., consider the Boolean Function AND: f (x4, x3) = x;/Ax,

1
Xy 2 y
E)
X2

A choice of w; = 1/2, w, = 1/2, 8 = 1 suffices to realize the AND operation. Clearly, there exists a
straight line that separates the two sets: {(0,0), (1,0), (0,1)} and {(1,1)}.

Xy X, X1 /\x,

0 0 0

0 1 0 2r

1 0 0 X, 1\\

1 1 1 !
(0,00 I~ 2

X1 ’

Consider the Boolean Function OR: f(x1,Xx3) = x; V X,
A choice of w; =1, w, = 1,and 8 = 1, prescribes a perceptron for the Boolean OR function.

X, —1
X2
Now consider the Boolean Function NOT: f(x) = —x

1
Xq

Fact: Any Boolean can be realized with A,V and —.
 For any Boolean function, 3 an ANN.

Example: f(xq, x5, X3) = X1X5 + XX3 + X3X;
We can combine the above perceptrons to construct an ANN for the above function as follows:

‘NI - ,‘Nl [

<> X1X2
1 @ xle -+ XZX3
" 2 <) X2X3
| 1 F(xq1,%5,%x3)
e |
YR —
1

* Consider: f(x;,x;) = x;Bx,

N N
-
w
e
[

@ means XOR
X1 X2 x,Dx,
0 0 0
0 1 1 (2,0)
1 0 1
1 1 0 (1,0 : |
(0,0)(0,1)(0,2)

Fact: There is no perceptron to realize XOR. Since there is no straight line that can separate the two
sets: {(0,0), (1,1)} and {(0,1), (1,0)}.

Back Propagation

Delta rules for learning the weights

An ANN can be used to learn concepts. Any learning algorithm is supplied with examples. An example
could either be positive or negative. A positive example is nothing but a set of values to the inputs
under which the network’s output is 1. A negative example is a set of values to the inputs under which
the output from the network is 0. (Here we have assumed that there are many inputs to the network
and there is a single output that could either be 1 or 0. We can extend these in a natural manner). To
learn a concept with an ANN, we first come up with the underlying topology (i.e., graph) for the ANN.
Then we have to compute the weights on edges and threshold for nodes. We use the examples for this
purpose. A simple strategy for the initial values for the weights could be random values. Without loss
of generality, all the threshold values could be chosen to be zero. When we pass every example though
the network, the weights get modified. When we process many examples, the hope is that the weights
would have converged to the right values corresponding to the concept of interest.

A simple algorithm for adjusting weights is known as back propagation delta rule. For every given
example, we know what the inputs and expected output are. We feed the input values, corresponding
to an example, to the network and observe the output from the network. If the observed output and
the expected output are the same, we don’t do any adjustments to the weights. If these two are
different we adjust the weights proportional to the difference between the expected and observed
outputs.

Thus, for every example, there are two steps. The first step is to compute the output of the network.
The second step is to adjust the network parameters as needed.

Input Output

O y
O

Let y be the expected output, and let y, be the observed output.
Adjust the weights proportional to the difference between y and y,,.
» Learning time = # of examples x size of the network.

PAC (Probably Approximately Correct) Learning

Let C be the concept that we are interested in learning. In general, we learn a concept C’ that is an
approximation to C.

The “distance” between C and C’' should be “small” -> Approximation

We should be able to show that dist(C, C") is < € with a probability of > (1 — §), where € and § are

. o - 1 1 .
user specified parameters. The learning time should be a polynomial in n-, andg where n is the

III

number of examples.

Example 1:

Concept: C->An axes aligned rectangle R

Examples: Points within the rectangle

Output: the smallest rectangle R’ that includes all the example points

R

*

* ’
% R

0
b

The area in red is the area R’ misses.
We want to show that the area missed is very small.

Let € be the difference between R and R’ in area.
Let m be the number of samples (i.e., examples).
The difference between R and R’ will be > € if all the m samples come from an area of < (1 — ¢).
Probability of this happeningis < (1 — €)™
We want this to be < 4.
1-e)™=56
= mlog(l —€) =logd

o6 (5)

1
=m= 1 (-) Thus we get to know how many samples will be enough to satisfy the
og ;

requirements of the user.

Recall:

A Boolean formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions.
Ex. F(x1, %2, %3) = (x1 + X2)(x3 + x1)

Definition: A k-CNF formula is a CNF formula with <k literals in each clause.
Definition: A monomial is a 1 CNF formula.
EX. F = xlx_2x3ﬂ

Learning a monomial: From positive examples
Let F be on n variables x4, x; ..., X, ;
Start with G = x1X1x,X5 ... X, X ;
We have m examples.
Each example is an assignment to the variables that satisfies F.
For each example do:
If x; = 1 then remove X, from G;
If x; = 0 then remove x; from G;
After processing all the examples, output G.
Let D be a distribution on the set of all assignments to the n variables.

diSt(F; G) = Z{v:v:Fand v#G6 or D(U)
v=G and v#F}
“=" means satisfies.

F G

Let m be the number of samples.
Prob[dist(F,G) > €] for all the m samplesis < (1 — €)™.

The number of possible concepts is < 22",

Probability that [dist(F, G) > €] holds for any of 22™ concepts is < 22"*(1 — €)™.
We want this to be < §
22"(1—e)™ =46
2n +mlog(l — €) = log(d)
2n+log(%)
log(=5)

Note that the learning time is O(mn).

