Class Notes
 Topics in Big Data Analytics

Data Reduction

Theorem: Let S be any set of n points in \mathbb{R}^{d}. Then, \exists a projection f such that $\forall \mathrm{u}, \mathrm{v} \in S,\|u-v\|^{2}(1-$ $\varepsilon) \leq\|f(u)-f(v)\|^{2} \leq(1+\varepsilon)\|u-v\|^{2}$. We can find such a project in random polytime.

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k} \quad \text { for } k>4\left(\frac{\varepsilon^{2}}{2}-\frac{\varepsilon^{3}}{3}\right)^{-1} \ln n
$$

Proof: Consider a random unit vector $Y=\frac{1}{\|X\|}\left(X_{1}, \ldots, X_{d}\right)$ where $X_{i}=N(0,1)$, all independent. Let $Z=$ $\frac{1}{\|X\|}\left(X_{1}, \ldots, X_{k}\right)$. The expected length of $Z=k / d=\mu$.

Claim: $\mathrm{P}\left[\|Z\| \leq \frac{\beta k}{d}\right] \leq e^{\frac{k}{2}(1-\beta+\ln \beta)} \forall \beta<1$ and $\mathrm{P}\left[\|Z\|>\frac{\beta k}{d}\right] \leq e^{\frac{k}{2}(1-\beta+\ln \beta)} \forall \beta>1$.
Fact: $\mathrm{E}\left[e^{s X^{2}}\right]=\frac{1}{\sqrt{1-2 s}}$ for any $-\infty<\mathrm{s}<1 / 2, X=N(0,1)$.
Fact: (Markov's inequality) If X is a non-negative random variable with $\mathrm{E}[X]=\mu$ then $\mathrm{P}[X \geq a \mu] \leq a^{1}$ $\Rightarrow \mathrm{P}[X \geq 1] \leq \mu$.

Proof: $\mathrm{P}\left[d\left(X_{1}^{2}+\cdots+X_{k}^{2}\right) \leq \beta k\left(X_{1}^{2}+\cdots+X_{d}^{2}\right)\right]=\mathrm{P}\left[\beta k\left(X_{1}^{2}+\cdots+X_{d}^{2}\right)-d\left(X_{1}^{2}+\cdots+X_{k}^{2}\right) \geq\right.$ $0]=\mathrm{P}\left[e^{t\left(\beta k\left(X_{1}^{2}+\cdots+X_{d}^{2}\right)-d\left(X_{1}^{2}+\cdots+X_{k}^{2}\right)\right)} \geq 1\right]$.

By Markov's inequality the previous probability is $\leq \mathrm{E}\left[e^{t\left(\beta k\left(X_{1}^{2}+\cdots+X_{d}^{2}\right)-d\left(X_{1}^{2}+\cdots+X_{k}^{2}\right)\right)}\right]$. We convert it to,

$$
\mathrm{E}\left[\left(e^{t k \beta X^{2}}\right)^{d-k}\left(e^{t(\beta k-d) X^{2}}\right)^{k}\right]=\left(\frac{1}{\sqrt{1-2 t k \beta}}\right)^{d-k}\left(\frac{1}{\sqrt{1-2 t(\beta k-d)}}\right)^{k} \text { where } t k \beta<1 / 2 .
$$

To get the best probability we differentiate it with respect to t, equate it to zero, then we substitute this value of t in it and simplify.

Let $\beta=(1-\varepsilon)$. Then, $\mathrm{P}\left[\|Z\| \leq(1-\varepsilon) \frac{k}{d}\right] \leq \frac{1}{n^{2}}$ and $\mathrm{P}\left[\|Z\| \geq(1-\varepsilon) \frac{k}{d}\right] \leq \frac{1}{n^{2}}$. Then, $\mathrm{P}\left[(1-\varepsilon) \frac{k}{d} \leq\|Z\| \leq\right.$ $\left.(1-\varepsilon) \frac{k}{d}\right] \leq \frac{2}{n^{2}}$. \Rightarrow For a fixed pair, the distance between them is more than a factor β away from their distance in \mathbb{R}^{d} is $\leq \frac{2}{n^{2}} \Rightarrow$ The probability that this happens for at least one pair is $\leq\left(_{2}^{n} \frac{2}{n^{2}}=1-\frac{1}{n}\right.$. Repeat this process $\alpha_{n} \ln n$ times. Then, the probability of failure in all of them is $\leq\left(1-\frac{1}{n}\right)^{\alpha n \ln n} \leq\left[\left(1-\frac{1}{n}\right)^{n}\right]^{\frac{1}{n} \alpha n \ln n} \leq e^{-\alpha \ln n}=n^{-\alpha}$. If $u \in \mathbb{R}^{d}$ and $u=\left(X_{1}, \ldots, X_{d}\right)$ then $f(u)=$ $\sqrt{\frac{d}{k}}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)$ where i_{1}, \ldots, i_{k} are picked randomly.

Runtime: $\mathrm{O}\left(k n^{3} \ln n\right)$.

Achleoptas Procedure

Consider the above matrices. Each row is a point and each element of R will be $=\left\{\begin{array}{cl}\sqrt{3} & \text { with } \operatorname{prob} \frac{1}{6} \\ 0 & \text { with prob } \frac{2}{3} \\ -\sqrt{3} & \text { with } \operatorname{prob} \frac{1}{6}\end{array}\right.$
Claim: This projection works with high probability.
Runtime: $\mathrm{O}(n d k)$

Learning Algorithm

Given positive and negative examples the goal is to learn a concept.

Performance Criteria:

- Sample Complexity \# of examples
- Time Complexity Learning time

Artificial Neural Networks:

It's a directed graph $G(V, E)$ where V are the processors and E are edges with weights.

