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PROBLEM : From out of a repository of research articles identify those that pertain to a specific topic.
IDEA 1: Correlations Based. This problem can be thought of as a classification problem. Every paper in the
repository has to be classified as either pertinent to the topic or not pertinent to the topic.

The classification can be treated as a learning process. There are two phases in any learning process:
1. Training
2. Testing
Training: We have a collection P of positive examples and a collection of negative examples. Let W be a vector
of keywords.

For each a ∈ P do
For each word w ∈ a do

Compute the enrichment of w as the number of occurrences of w in a;
EndFor

EndFor
For each work w do

Compute w′s average enrichment across all the documents in P
EndFor

Let Wp be the positive enrichment vector. Wp is nothing but a vector of average enrichments for the key-
words computed using the positive examples. Along the same lines compute an enrichment vector Wn for the
articles in Negative set.

Let W = w1, w2, . . . , wk. We define an enrichment vector S as follows. S[i] =Wp[i]−Wn[i] where Wp[i]
and Wn[i] refer to enrichments of wi, 1 ≤ i ≤ k. Each value in S ∈ [−1,+1]

For any unknown document q, we compute an enrichment vector in the same way. Let this vector be S′.
Compute the Pearson’s correlation between S and S′.

Pearson’s correlation coefficient between X and Y is defined as E(X−µX)E(Y−µY )
σXσY

∈ [−1,+1].

If this coefficient is < τ (a threshold) we will classify it as negative, otherwise classify it as positive. Pick a
threshold τ that gives the best accuracy in the training data.

Gene Selection :

Figure 1: Gene Selection
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Problem Definition: Assume that there are n genes: g1, g2, . . . , gn. The input to the gene selection problem has
a sequence of vectors S1, S2, . . . , Sq where each vector is the data collected from one microarray experiment.
Vector Si = x1i , x

2
i , . . . , x

n
i , yi. Here xji is the expression level (a real number) of the jth gene (gj) in experiment

i (for 1 ≤ i ≤ q and 1 ≤ j ≤ n). Also, yi is 1 if the event of interest is present in experiment i and yi is −1 if
the event is absent in experiment i (for 1 ≤ i ≤ q). The yi’s can be thought of as representing a phenotype. The
problem is to identify a minimum set of genes gi1 , gi2 , . . . , gim that are enough to predict yi in each experiment
i, 1 ≤ i ≤ q. We are also required to infer a prediction function f .

Clearly, the above problem can also be thought of as a classification problem and the function f can be
considered as the classifier. Vectors for which yi = 1 form one class and the other vectors form another class.

Techniques used for feature selection can also be used for gene selection. For example, principal component
analysis (PCA) used in feature selection (actually better called feature reduction in this case) is one of the current
methods for gene selection in microarray data.

Support Vector Machine (SVM) can also be used to identify a subset of genes that can explain the phenotype.

Singular Value Decomposition : (SVD)
INPUT : A matrix Am×n with m ≥ n
OUTPUT : A decomposition of A such that A = U

∑
V T . U is an n ×m orthogonal matrix, i.e., UTU = I .

V is a n × n orthogonal matrix.
∑

is an m × n diagonal matrix = (σ1, σ2, . . . , σn). Here σ1, σ2, . . . , σn are
singular values.

JACOBI ITERATIVE ALGORITHM :
IDEA : We have rotation as a basic operation. A rotation is nothing but pre and post multiplying by orthogonal
matrices. We apply a series of rotations onA to get JT1 AJ1, J

T
2 J

T
1 AJ1J2, . . .. In any rotation we zero out an off

diagonal element. We apply a rotation for each off diagonal element once. This series will constitute a SWEEP.
We do as many sweeps as needed to obtain a diagonal matrix.

Figure 2: Jacobi Iterative Algorithm
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We want bij = 0. c = 1√
1+t2

; s = t√
1+t2

where t = sign(τ)
|τ |+
√
1+τ2

and τ =
ajj−aii
2aij

.

ORDER OF ELIMINATION:
1. CLASSICAL: Use the off diagonal element with the largest absolute value.
2. Cyclic: As an example, when n = 3 the following order can be used: 12, 13, 23.

Figure 3: Cyclic order of elimination

CONVERGENCE:
CLAIM: If aij is zeroed out in any rotation, then the norm of the off diagonal elements decreases by 2a2ij .
PROOF:

Fact: The Frobenius norm of a matrix doesn’t change with orthogonal transformations. This means that

a2ii + a2jj + 2a2ij = b2ii + b2jj + 2b2ij .

Notation: off(A) = norm of the off diagonal element of A. Let J be the rotation operation that targets the
element aij . Let B = JTAJ .

off(B) = norm(B)−
∑
b2ii = norm(A)−

∑
i a

2
ii + (a2ii + a2ij − b2ii − b2jj) = off(A)− 2a2ij .

Sequential and Parallel Rotations
We have to decompose A as: A = U

∑
V T .

SEQUENTIAL :
B1 = JT1 AJ1
B2 = JT2 B1J2
B3 = JT3 B2J3
.
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PARALLEL :
B1 = JT1 AJ1
B2 = JT2 AJ2
B3 = JT3 AJ3
.
.
.
.

B′ = (J1J2J3.......Jk)
TA(J1J2J3........Jk).

JACOBI RELAXATION SCHEME(JRS) (Rajasekaran and Song 2008)
The idea is to target an off-diagonal element in each rotation, but to decrease its value only by a fraction

(instead of decreasing it to zero). If J is the rotation letB = JTAJ . We let bij = λaij for some 0 < λ < 1. The
following values for the parameters ensure this: c = 1√

1+t2
; s = t√

1+t2
; t = Sin(τ)(1−λ)

|τ |+
√
τ2+(1−λ2) ; and τ =

ajj−aii
2aij

.
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