CSE 5095: Research Topics in Big Data Analytics
Lecture 18 (April 01, 2014)

Recap of the last class:

* Inthe last lecture, we learnt about two methods for generating candidates for frequent
itemsets. Once we generate the candidates, we have to compute the support for each
candidate. We also introduced hash tree for efficiently checking candidates.

Expected time for candidates checking:

It takes O (k?|Cy|) time.

Computing support of candidates in Cy:

A simple algorithm takes O(Nk |C|) time.

Another way:

For each transaction, increment the support by 1 of each candidate that is contained in the transaction.
Use a hash tree to store all the candidates in Cy,.

Level-1

Level-2

Level-k
........... (i

Figure 1: A hash tree is used to store all the candidates in C,.

For each transaction T do
For each k — subset Q of T do
Hash Q into the hash tree. Once a leaf is reached,
For each candidate in the leaf

Increment the support by 1 if the candidate is the same as Q.

Expected Run Time =0 ((lil) k) where k denotes the level of the hash tree. The size of each

candidate is also k.

Rules Generation:

* Let X be any frequent itemset. We generate rules from X as follows:
o Consider all non-empty and proper subsets Y of X.
o Compute the confidence of theruleY - X =Y

Note: Confidence for this rule is &)
- a(Y)

e IfY' cYthena(Y") = a(Y).
Therefore, (the confidence of Y - X —Y) > (the confidence of Y' - X —Y")

Idea: Use the above observation and a level wise approach. At level k generate rules with k items in the
consequent, starting fromk = 1,2,

Example:

If the rule {abc} — {d} does not have enough confidence then we can ignore the following rules:
{ab} - {cd}, {bc} - {ad} and so on.

Note: We can generate candidates at each level just like in the case of frequent itemsets generation.
{ab} - {cd} is a candidate if {abd} — {c}, {abc} - {d} have enough confidence.
m Apriori uses horizontal layout of the data: We keep the transactions.

m Vertical Layout: For every item keep a list of transactions in which the item occurs.

A randomized rules mining algorithm (Toivanan 1996)

Basic idea:

* Let DB be the given database

* Let minSupport be the target support

* Pick arandom sample S from DB

* Identify itemsets from S with a support of > ms where ms < minSupport

* Let Q be the collection of frequent itemsets in S

* Foreachitemset g € Q calculate its support in DB by examining the rest of the DB.
* Output each g € Q whose support in DB is = minSupport.

Note: If every frequent itemset in DB is also frequent in S, then we are in good shape. If ms is small
enough, then this will happen with a high probability. However, is there any way to make sure that we
have captured all the frequent itemsets of DB in S? The notion of negative border will be helpful in this

direction.
Definition:

* Let S be a collection of itemsets.
* Then the negative border of S, denoted as NB(S), is defined as the collection of itemsets that

are not in S, but each subset of themisin S.

Example:
I ={a,b,cde,f}
S = {{ac}, {abd}, {de}, {abe}}

NB(S) = {{f}, {bc},{cd}, {ce}}

X

X
}X — Negative Borders

}X }X one of them has
}X }X}X X }X }X \ ':noughfstzppo?t.

Note:

Let S be a set of frequent itemsets. If none of the sets in NB(S) has a support of > minSupport then S
is a superset of all the frequent itemsets in DB.

Modified Algorithm:

* Pick arandom sample S from the DB.
* Identify itemsets from S with a support of > ms, where ms < minSupport
* Let Q be the collection of frequent itemsets in S.
 LetQ =NB(Q)
* Foreachq € Q UNB(Q)do
o Compute its support in DB examining the rest of the database.
* Ifnosetin NB(Q)‘ has a support of > minSupport then output all the sets in Q whose support
in DB is = minSupport.

* If not, use another 2 phase algorithm.

Analysis: To be continued...

